Talent details

Name:Yingying Chen
Title & Affiliation:Ph.D,Professor
Homepage in Chinese:http://sourcedb.itpcas.cas.cn/cn/expert/201209/t20120903_3637412.html
Address:Building 3, Courtyard 16, Lincui Road, Chaoyang District, Beijing 100101, China

Education and Appointments

Ph.D. Institute of Remote Sensing Applications, CAS, 2008
M. S. School of Resources and Environment, Lanzhou University, 2005
B. S. School of Resources and Environment, Lanzhou University, 2002
Associate Professor, Institute of Tibetan Plateau Research, CAS, 2012.07 - present
Assistant Professor, Institute of Tibetan Plateau Research, CAS, 2011.10 – 2012.06
Post-Doctoral Fellow, Institute of Tibetan Plateau Research, CAS, 2008.07 – 2011.06

Research Interest

Dr. Chen analyzed the hydrometeorological processes on the Tibetan Plateau by observing the key elements of energy and water cycle as well as extensively measuring the soil hydrothermal parameters through establishing observation networks. He improved the surface heat transfer parameterization scheme of the land surface models (LSMs) and developed a new soil thermal conductivity parameterization scheme and soil pedo-transfer functions (PDFs), which improved the simulation of the surface energy balance processes and soil hydrothermal transport processes. The improved work on surface heat transfer was adopted by the most widely used regional climate model, WRF. He also evaluated the accuracy of model simulations, reanalysis data, and satellite remote sensing products to find ways to improve models and satellite retrieval algorithms. He has authored 53 peer-reviewed journal articles (with a Scopus h-index of 23, total citation 1553 and a Researchgate score of 33.33, total citation 2242).
Dr. Yingying Chen is engaged in the observation and analysis of hydrometeorological processes and the improvement of land surface models on the Tibetan Plateau. He has established observing networks for surface energy fluxes, soil moisture, soil temperature, and precipitation. Based on the observed data, he analyzes the unique hydrometeorological processes on the Tibetan Plateau, develops parameterization schemes for key processes, and evaluates the accuracy of model simulations and satellite remote sensing products to reveal ways to improve land surface models and satellite retrieval algorithms.

Selected Publications

For more information 


ORCID: 0000-0001-6005-3516 

Research Paper: 

1. Chen, Y.*, Sharma, S., Zhou, X., Yang, K., Li, X., Niu, X., Hu, X., Khadka, N., 2020. Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya. Atmospheric Research, DOI: 10.1016/j.atmosres.2020.105365. 

2. Yao, X., Yang, K., Zhou, X., Wang, Y., Chen, Y., Lu, H., 2020, Surface friction contrast between water body and land enhances precipitation downwind of a large lake in Tibet. Climate Dynamics, https://www.researchgate.net/publication/346668095_Surface_friction_contrast_between_water_body_and_land_enhances_precipitation_downwind_of_a_large_lake_in_Tibet#fullTextFileContent

3. He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., Li, X., 2020, The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data, 7 (1),DOI: 10.1038/s41597-020-0369-y. 

4. Nawaz, Z., Li, X., Chen, Y.*, Nawaz, N., Gull, R., Elnashar, A., 2020. Spatio-temporal assessment of global precipitation products over the largest agriculture region in Pakistan. Remote Sensing, 12 (21), 1-24. DOI: 10.3390/rs12213650. 

5. Sharma, S., Khadka, N., Hamal, K., Shrestha, D., Talchabhadel, R., Chen, Y., 2020. How Accurately Can Satellite Products (TMPA and IMERG) Detect Precipitation Patterns, Extremities, and Drought Across the Nepalese Himalaya? Earth and Space Science, 7 (8), DOI: 10.1029/2020EA001315. 

6. Yang, K., Chen, Y., He, J., Zhao, L., Lu, H., Qin, J., Zheng, D., Li, X., 2020. Development of a daily soil moisture product for the period of 20022011 in Chinese mainland. Science China Earth Sciences, 63 (8),1113-1125. DOI: 10.1007/s11430-019-9588-5. 

7. Zhang, Z., Zhao, T., Shi, J., Li, Y., Ran, Y., Chen, Y., Zhao, S., Wang, J., Ning, Z., Yang, H., Han, D., 2020. Near-surface freeze/thaw state mapping over Tibetan Plateau. Journal of Remote Sensing, 24 (7), 904-916. DOI: 10.11834/jrs.20209293. (In Chinese with English Abstract) 

8.Yue, S., Yang, K., Lu, H., Chen, Y., Sharma, S., Yang, X., Shrestha, M.L., 2020. Distinct temperature changes between north and south sides of centraleastern Himalayas since 1970s. International Journal of Climatology, 40 (9), 4300-4308. DOI: 10.1002/joc.6439. 

9. Sharma, S., Chen, Y.*, Zhou, X., Yang, K., Li, X., Niu, X., Hu, X., Khadka, N., 2020. Evaluation of GPM-Era satellite precipitation products on the southern slopes of the central Himalayas against rain gauge data. Remote Sensing, 12 (11), DOI: 10.3390/rs12111836. 

10. Luo, Q., Yang, K., Chen, Y., Zhou, X., 2020. Method development for estimating soil organic carbon content in an alpine region using soil moisture data. Science China Earth Sciences, 63 (4), 591-601. DOI: 10.1007/s11430-019-9554-8. 

11. Ouyang, L., Yang, K., Lu, H., Chen, Y., Lazhu, Zhou, X., Wang, Y., 2020. Ground-Based Observations Reveal Unique Valley Precipitation Patterns in the Central Himalaya. Journal of Geophysical Research: Atmospheres, 125 (5), DOI: 10.1029/2019JD031502. 

12. Wang, Y., Yang, K., Zhou, X., Chen, D., Lu, H., Ouyang, L., Chen, Y., Lazhu, Wang, B., 2020. Synergy of orographic drag parameterization and high resolution greatly reduces biases of WRF-simulated precipitation in central Himalaya. Climate Dynamics, 54 (3-4), 1729-1740. DOI: 10.1007/s00382-019-05080-w. 

13. Nawaz, Z., Li, X., Chen, Y.*, Wang, X., Zhang, K., Nawaz, N., Guo, Y., Meerzhan, A., 2020. Spatiotemporal Assessment of Temperature Data Products for the Detection of Warming Trends and Abrupt Transitions over the Largest Irrigated Area of Pakistan. Advances in Meteorology, DOI: 10.1155/2020/3584030. 

14. Li, X., Gou, X., Wang, N., Sheng, Y., Jin, H., Qi, Y., Song, X., Hou, F., Li, Y., Zhao, C., Zou, S., Wang, H., Zheng, D., Chen, Y., Niu, X., 2019. Tightening ecological management facilitates green develop- ment in the Qilian Mountains. Chinese Science Bulletin, 64 (27), 2928-2937. DOI: 10.1360/TB-2019-0209. (In Chinese with English Abstract) 

15. Nawaz, Z., Li, X., Chen, Y.*, Guo, Y., Wang, X., Nawaz, N., 2019. Temporal and spatial characteristics of precipitation and temperature in Punjab, Pakistan. Water, 11 (9), DOI: 10.3390/w11091916. 

16. Li, C., Lu, H., Leung, L.R., Yang, K., Li, H., Wang, W., Han, M., Chen, Y., 2019. Improving Land Surface Temperature Simulation in CoLM Over the Tibetan Plateau Through Fractional Vegetation Cover Derived From a Remotely Sensed Clumping Index and Model-Simulated Leaf Area Index. Journal of Geophysical Research: Atmospheres, 124 (5), 2620-2642. DOI: 10.1029/2018JD028640. 

17. Rizwan, M., Li, X., Jamal, K., Chen, Y.*, Chauhdary, J.N., Zheng, D., Anjum, L., Ran, Y., Pan, X., 2019. Precipitation variations under a changing climate from 1961-2015 in the source region of the Indus River. Water, 11 (7), DOI: 10.3390/w11071366. 

18. Li, C., Lu, H., Yang, K., Han, M., Wright, J.S., Chen, Y., Yu, L., Xu, S., Huang, X., Gong, W., 2018. The evaluation of SMAP enhanced soil moisture products using high-resolution model simulations and in-situ observations on the Tibetan Plateau. Remote Sensing, 10 (4), DOI: 10.3390/rs10040535. 

19. Han, M., Lu, H., Yang, K., Qin, J., Chen, Y., Zhao, L., Lazhu, 2017. A surface soil temperature retrieval algorithm based on amsr-e multi-frequency brightness temperatures. International Journal of Remote Sensing, 38 (23), 6735-6754. DOI: 10.1080/01431161.2017.1363438. 

20. Zhou, X., Beljaars, A., Wang, Y., Huang, B., Lin, C., Chen, Y., Wu, H., 2017. Evaluation of WRF Simulations With Different Selections of Subgrid Orographic Drag Over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 122 (18), 9759-9772. DOI: 10.1002/2017JD027212. 

21. Wang, Y., Yang, K., Pan, Z., Qin, J., Chen, D., Lin, C., Chen, Y., Lazhu, Tang, W., Han, M., Lu, N., Wu, H., 2017. valuation of precipitable water vapor from four satellite products and four reanalysis datasets against GPS measurements on the Southern Tibetan Plateau. Journal of Climate, 30 (15), 5699-5713. DOI: 10.1175/JCLI-D-16-0630.1. 

22. Li, C., Lu, H., Yang, K., Wright, J.S., Yu, L., Chen, Y., Huang, X., Xu, S., 2017. Evaluation of the Common Land Model (CoLM) from the perspective of water and energy budget simulation: Towards inclusion in CMIP6. Atmosphere, 8 (8), DOI: 10.3390/atmos8080141. 

23. Wang, L., Zhou, J., Qi, J., Sun, L., Yang, K., Tian, L., Lin, Y., Liu, W., Shrestha, M., Xue, Y., Koike, T., Ma, Y., Li, X., Chen, Y., Chen, D., Piao, S., Lu, H., 2017. Development of a land surface model with coupled snow and frozen soil physics. Water Resources Research, 53 (6), 5085-5103. DOI: 10.1002/2017WR020451. 

24. Ding, B., Yang, K., Yang, W., He, X., Chen, Y., Lazhu, Guo, X., Wang, L., Wu, H., Yao, T., 2017. Development of a Water and Enthalpy Budget-based Glacier mass balance Model (WEB-GM) and its preliminary validation. Water Resources Research, 53 (4), 3146-3178. DOI: 10.1002/2016WR018865. 

25. Chen, Y.*, Yang, K., Qin, J., Cui, Q., Lu, H., La, Z., Han, M., Tang, W., 2017. Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau. Journal of Geophysical Research, 122 (11), 5780-5792. DOI: 10.1002/2016JD026388. 

26. Yang, K., Qin, J., Chen, Y., Han, M., Zhao, L., 2016. Soil moisture and temperature measuring networks in the Tibetan Plateau and their applications in validation of microwave products. International Geoscience and Remote Sensing Symposium (IGARSS), 2016-November, DOI: 10.1109/IGARSS.2016.7729896. 

27. Wang, L., Li, X., Chen, Y., Yang, K., Chen, D., Zhou, J., Liu, W., Qi, J., Huang, J., 2016. Validation of the global land data assimilation system based on measurements of soil temperature profiles. Agricultural and Forest Meteorology, 218-219, 288-297. DOI: 10.1016/j.agrformet.2016.01.003. 

28. Yang, K., Zhu, L., Chen, Y., Zhao, L., Qin, J., Lu, H., Tang, W., Han, M., Ding, B., Fang, N., 2016. Land surface model calibration through microwave data assimilation for improving soil moisture simulations. Journal of Hydrology, 533, 266-276. DOI: 10.1016/j.jhydrol.2015.12.018. 

29. La Z., Yang, K., Wang, J., Lei, Y., Chen, Y., Zhu, L., Ding, B., Qin, J., 2016. Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau. Journal of Geophysical Research, 121 (13), 7578-7591. DOI: 10.1002/2015JD024523. 

30. Lin, C., Yang, K., Huang, J., Tang, W., Qin, J., Niu, X., Chen, Y., Chen, D., Lu, N., Fu, R., 2015. Impacts of wind stilling on solar radiation variability in China. Scientific Reports, 5, DOI: 10.1038/srep15135. 

31. Han, M., Yang, K., Qin, J., Jin, R., Ma, Y., Wen, J., Chen, Y., Zhao, L., Lazhu, Tang, W., 2015. An algorithm based on the standard deviation of passive microwave brightness temperatures for monitoring soil surface freeze/thaw state on the Tibetan plateau. IEEE Transactions on Geoscience and Remote Sensing, 53 (5), DOI: 10.1109/TGRS.2014.2364823. 

32. Qin, J., Zhao, L., Chen, Y., Yang, K., Yang, Y., Chen, Z., Lu, H., 2015. Inter-comparison of spatial upscaling methods for evaluation of satellite-based soil moisture. Journal of Hydrology, 523, 170-178. DOI: 10.1016/j.jhydrol.2015.01.061. 

33. Wu, H., Yang, K., Niu, X.L., Chen, Y.Y., 2015. The role of cloud height and warming in the decadal weakening of atmospheric heat source over the Tibetan Plateau. Science China Earth Sciences, 58 (3), 395-403. DOI: 10.1007/s11430-014-4973-6. 

34. Zheng, D., van der Velde, R., Su, Z., Wang, X., Wen, J., Booij, M.J., Hoekstra, A.Y., Chen, Y., 2015. Augmentations to the Noah model physics for application to the Yellow River source area. Part I: Soil water flow. Journal of Hydrometeorology, 16 (6), 2659-2676. DOI: 10.1175/JHM-D-14-0198.1. 

35. Zheng, D., van der Velde, R., Su, Z., Wang, X., Wen, J., Booij, M.J., Hoekstra, A.Y., Chen, Y., 2015. Augmentations to the Noah model physics for application to the Yellow River source area. Part II: Turbulent heat fluxes and soil heat transport. Journal of Hydrometeorology, 16 (6), 2677-2694. DOI: 10.1175/JHM-D-14-0199.1. 

36. Wang, L., Cao, L., Deng, X., Jia, P., Zhang, W., Xu, X., Zhang, K., Zhao, Y., Yan, B., Hu, W., Chen, Y., 2014. Changes in aridity index and reference evapotranspiration over the central and eastern Tibetan Plateau in China during 1960-2012. Quaternary International, 349, 280-286. DOI: 10.1016/j.quaint.2014.07.030. 

37. Ding, B., Yang, K., Qin, J., Wang, L., Chen, Y., He, X., 2014. The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization. Journal of Hydrology, 513, 154-163. DOI: 10.1016/j.jhydrol.2014.03.038. 

38. Yang, K., Wu, H., Chen, Y., Qin, J., Wang, L., 2014. Toward a satellite-based observation of atmospheric heat source over land. Journal of Geophysical Research, 119 (6), 3124-3133. DOI: 10.1002/2013JD021091. 

39. Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., Chen, Y., 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global and Planetary Change, 112, 79-91. DOI: 10.1016/j.gloplacha.2013.12.001. 

40. Zhao, L., Yang, K., Qin, J., Chen, Y., Tang, W., Lu, H., Yang, Z.-L., 2014. The scale-dependence of SMOS soil moisture accuracy and its improvement through land data assimilation in the central Tibetan Plateau. Remote Sensing of Environment, 152, 345-355. DOI: 10.1016/j.rse.2014.07.005. 

41. Yang, K., Qin, J., Zhao, L., Chen, Y., Tang, W., Han, M., Zhu, L., Chen, Z., Lv, N., Ding, B., Wu, H., Lin, C., 2013. A multiscale soil moisture and freeze-thaw monitoring network on the third pole. Bulletin of the American Meteorological Society, 94 (12), 1907-1916. DOI: 10.1175/BAMs-d-12-00203.1. 

42. Qin, J., Yang, K., Lu, N., Chen, Y., Zhao, L., Han, M., 2013. Spatial upscaling of in-situ soil moisture measurements based on MODIS-derived apparent thermal inertia. Remote Sensing of Environment, 138, 1-9. DOI: 10.1016/j.rse.2013.07.003. 

43. Xue, B.-L., Wang, L., Yang, K., Tian, L., Qin, J., Chen, Y., Zhao, L., Ma, Y., Koike, T., Hu, Z., Li, X., 2013. Modeling the land surface water and energy cycles of a mesoscale watershed in the central Tibetan Plateau during summer with a distributed hydrological model. Journal of Geophysical Research Atmospheres, 118 (16), 8857-8868. DOI: 10.1002/jgrd.50696. 

44. Chen, Y.*, Yang, K., Qin, J., Zhao, L., Tang, W., Han, M., 2013. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. Journal of Geophysical Research Atmospheres, 118 (10), 4466-4475. DOI: 10.1002/jgrd.50301. 

45. Zhao, L., Yang, K., Qin, J., Chen, Y., Tang, W., Montzka, C., Wu, H., Lin, C., Han, M., Vereecken, H., 2013. Spatiotemporal analysis of soil moisture observations within a Tibetan mesoscale area and its implication to regional soil moisture measurements. Journal of Hydrology, 482, 92-104. DOI: 10.1016/j.jhydrol.2012.12.033. 

46. Zeng, C., Zhang, F., Wang, Q., Chen, Y., Joswiak, D.R., 2013. Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau. Journal of Hydrology, 478, 148-156. DOI: 10.1016/j.jhydrol.2012.11.058. 

47. Zhao, L., Yang, K., Qin, J., Chen, Y.,2013. Optimal exploitation of AMSR-E signals for improving soil moisture estimation through land data assimilation. IEEE Transactions on Geoscience and Remote Sensing, 51 (1), 399-410. DOI: 10.1109/TGRS.2012.2198483. 

48. Chen, Y.*, Yang, K., Tang, W., Qin, J., Zhao, L., 2012. Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands. Science China Earth Sciences, 55 (6), 1001-1011. DOI: 10.1007/s11430-012-4433-0. 

49. Guo, X., Yang, K., Zhao, L., Yang, W., Li, S., Zhu, M., Yao, T., Chen, Y., 2011. Critical Evaluation of Scalar Roughness Length Parametrizations Over a Melting Valley Glacier. Boundary-Layer Meteorology, 139 (2), 307-332. DOI: 10.1007/s10546-010-9586-9. 

50. Guo, X., Yang, K., Chen, Y., 2011. Weakening sensible heat source over the Tibetan Plateau revisited: Effects of the land-atmosphere thermal coupling. Theoretical and Applied Climatology, 104 (1-2), 1-12. DOI: 10.1007/s00704-010-0328-1. 

51. Chen, Y.*, Yang, K., He, J., Qin, J., Shi, J., Du, J., He, Q., 2011. Improving land surface temperature modeling for dry land of China. Journal of Geophysical Research Atmospheres, 116 (20). DOI: 10.1029/2011JD015921. 

52. Chen, Y.*, Yang, K., Zhou, D., Qin, J., Guo, X., 2010. Improving the noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. Journal of Hydrometeorology, 11 (4), 995-1006. DOI: 10.1175/2010JHM1185.1. 

53. Yang, K., Chen, Y.-Y., Qin, J., 2009. Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrology and Earth System Sciences, 13 (5), 687-701. DOI: 10.5194/hess-13-687-2009. 

Book chapter and News: 

1. Chen, Y., Yang, K., 2013. Land surface process study and modeling in drylands and high-elevation regions. Land Surface Observation, Modeling and Data Assimilation, pp. 93-126. DOI: 10.1142/9789814472616_0004. 

2. Chen, Y., Yang, K., 2011. Parameterizing thermal roughness length is crucial for dryland energy budget modeling, Global Energy and Water Cycle Experiment News, 21 (1), 5-6.