Talent details

Name:Donghai Zheng
Title & Affiliation:Ph.D, Professor
Tel:010-84504383
Email:zhengd@itpcas.ac.cn
Homepage in Chinese:http://sourcedb.itpcas.cas.cn/cn/expert/201804/t20180403_4990608.html
Address:Building 3, Courtyard 16, Lincui Road, Chaoyang District, Beijing 100101, China

Education and Appointments

Education 
Ph.D. University of Twente, 2015
M. S. Beijing Normal University, 2010
B. S. Fujian Normal University, 2007
Appointments
Professor, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 2021.12-present
Associate Professor, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 2018-2021
Researcher, ITC, University of Twente (Netherlands), 2015-2018

Research Interest

Research Interests: Microwave Remote Sensing, Land Surface Modelling
Research Fields: Remote Sensing and Hydrometeorology

Selected Publications

First and Corresponding Author:

1. Sun, S., Zheng, D.*, Liu, S.*, Xu, Z., Xu, T., Zheng, H., and Yang, X. (2022). Assessment and improvement of Noah-MP for simulating water and heat exchange over alpine grassland in growing season. Science China Earth Sciences, 65, https://doi.org/10.1007/s11430-021-9852-2.

2. Zheng, D., Li, X., Wen, J., Hofste, J.G., van der velde, R., Wang, X., Wang, Z., Bai, X., Schwank, M., and Su, Z. (2021a). Active and Passive Microwave Signatures of Diurnal Soil Freeze-Thaw Transitions on the Tibetan Plateau. IEEE Transactions on Geoscience and Remote Sensing, 60, doi: 10.1109/TGRS.2021.3092411.

3. Zheng, D., Li, X., Zhao, T., Wen, J., van der Velde, R., Schwank, M., Wang, X., Wang, Z., and Su, Z. (2021b). Impact of Soil Permittivity and Temperature Profile on L-Band Microwave Emission of Frozen Soil. IEEE Transactions on Geoscience and Remote Sensing, 59(5), 4080-4093.

4. Zhang, P., Zheng, D.*, van der Velde, R., Wen, J., Zeng, Y., Wang, X., Wang, Z., Chen, J., and Su, Z.* (2021). Status of the Tibetan Plateau observatory (Tibet-Obs) and a 10-year (2009–2019) surface soil moisture dataset. Earth Syst. Sci. Data, 13, 3075–3102.

5. Bai, X., Zheng, D.*, Wen, J., Wang, X., and van der velde, R. (2021). Using a Discrete Scattering Model to Constrain Water Cloud Model for Simulating Ground-Based Scatterometer Measurements and Retrieving Soil Moisture. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 9424–9434.

6. Wu, X., and Zheng, D.* (2021). Surface Roughness Effect on L-Band Multiangular Brightness Temperature Modeling and Soil Liquid Water Retrieval of Frozen Soil. IEEE Geoscience and Remote Sensing Letters, 18(9), 1615-1619.

7. Su, J., Li, X., Ren, W., Lü, H.*, and Zheng, D.*(2021). How reliable are the satellite-based precipitation estimations in guiding hydrological modelling in South China? Journal of Hydrology, 602, 126705.

8. Zhou, Y., Li, X.*,Zheng, D.*, Li, Z., An, B., Wang, Y., Jiang, D., Su, J., and Cao, B. (2021). The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya.Science China Earth Sciences, 64(11), 1909–1921.

9. Cao, B., Gruber, S., Zheng, D.*, and Li, X.* (2020). The ERA5-Land Soil-Temperature Bias in Permafrost Regions. The Cryosphere, 14, 2581-2595.

10. Zheng, D., Li, X., Wang, X., Wang, Z., Wen, J., van der Velde, R., Schwank, M., and Su, Z. (2019). Sampling depth of L-band radiometer measurements of soil moisture and freeze-thaw dynamics on the Tibetan Plateau. Remote Sensing of Environment, 226, 16-25.

11. Zheng, D., Wang, X., van der Velde, R., Schwank, M., Ferrazzoli, P., Wen, J., Wang, Z., Colliander, A., Bindlish, R., and Su, Z. (2019). Assessment of Soil Moisture SMAP Retrievals and ELBARA-III Measurements in a Tibetan Meadow Ecosystem. IEEE Geoscience and Remote Sensing Letters, 16(9), 1407-1411.

12. Zheng, D., Wang, X., van der Velde, R., Ferrazzoli, P., Wen, J., Wang, Z., Schwank, M., Colliander, A., Bindlish, R., and Su, Z. (2018). Impact of surface roughness, vegetation opacity and soil permittivity on L-band microwave emission and soil moisture retrieval in the third pole environment. Remote Sensing of Environment, 209, 633-647.

13. Zheng, D., van der Velde, R., Wen, J., Wang, X., Ferrazzoli, P., Schwank, M., Colliander, A., Bindlish, R., and Su, Z. (2018). Assessment of the SMAP Soil Emission Model and Soil Moisture Retrieval Algorithms for a Tibetan Desert Ecosystem. IEEE Transactions on Geoscience and Remote Sensing, 56, 3786-3799.

14. Zheng, D., van der Velde, R., Su, Z., Wen, J., Wang, X., and Yang, K. (2018). Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan rivers. Journal of Hydrology, 563, 382-394.

15.Zheng, D., Wang, X., van der Velde, R., Zeng, Y., Wen, J., Wang, Z., Schwank, M., Ferrazzoli, P., and Su, Z. (2017).L-Band Microwave Emission of Soil Freeze-Thaw Process in the Third Pole Environment. IEEE Transactions on Geoscience and Remote Sensing, 55(9), 5324-5338.

16. Zheng, D., van der Velde, R., Su, Z., Wen, J., and Wang, X. (2017). Assessment of Noah land surface model with various runoff parameterizations over a Tibetan river. Journal of Geophysical Research: Atmosphere, 122, 1488-1504.

17. Zheng, D., van der Velde, R., Su, Z., Wen, J., Wang, X., and Yang, K. (2017). Evaluation of Noah Frozen Soil Parameterization for Application to a Tibetan Meadow Ecosystem. Journal of Hydrometeorology, 18(6), 1749-1763.

18. Zheng, D., van der Velde, R., Su, Z., Wen, J., Wang, X., Booij, M. J., Hoekstra, A. Y., Lv, S., Zhang, Y., and Ek, M. B. (2016). Impacts of Noah model physics on catchment-scale runoff simulations. Journal of Geophysical Research: Atmosphere, 121, 807-832.

19. Zheng, D., van der Velde, R., Su, Z., Wang, X., Wen, J., Booij, M. J., Hoekstra, A. Y., and Chen, Y. (2015a). Augmentations to the Noah model physics for application to the Yellow River source area. Part I: Soil water flow. Journal of Hydrometeorology, 16(6), 2659-2676.

20. Zheng, D., van der Velde, R., Su, Z., Wang, X., Wen, J., Booij, M. J., Hoekstra, A. Y., and Chen, Y. (2015b). Augmentations to the Noah model physics for application to the Yellow River source area. Part II: Turbulent heat fluxes and soil heat transport. Journal of Hydrometeorology, 16(6), 2677-2694.

21. Zheng, D., van der Velde, R., Su, Z., Wen, J., Booij, M. J., Hoekstra, A. Y., and Wang, X. (2015). Under-canopy turbulence and root water uptake of a Tibetan meadow ecosystem modeled by Noah-MP. Water Resources Research, 51, 5735-5755.

22. Zheng, D., van der Velde, R., Su, Z., Booij, M. J., Hoekstra, A. Y., and Wen, J. (2014). Assessment of roughness length schemes implemented within the Noah land surface model for high-altitude regions. Journal of Hydrometeorology, 15(3), 921-937.

Co-author (recent three years):

1.Li, X.,Zheng, D., Feng, M., and Chen, F. (2022). Information geography: The information revolution reshapes geography.Science China Earth Sciences, 65(2), 379-382.

2. Zhou, Y., Li, X., Zheng, D., Zhang, X., Wang, Y., Ren, S., and Guo, Y. (2022). Decadal Changes in Glacier Area, Surface Elevation and Mass Balance for 2000–2020 in the Eastern Tanggula Mountains Using Optical Images and TanDEM-X Radar Data. Remote Sensing, 14(3), 506.

3. Fu, X., Jiang, X., Yu, Z., Ding, Y., Lü, H., and Zheng, D. (2022). Understanding the key factors that influence soil moisture estimation using the unscented weighted ensemble Kalman filter. Agricultural and Forest Meteorology, 313, 108745.

4. Zhang, L., Li, X., Zheng, D., Zhang, K., and Ge, Y. (2021). Merging multiple satellite-based precipitation products and gauge observations using a novel double machine learning approach. Journal of Hydrology, 594(6), 125969.

5. Zhang, Y., Ryu, D., and Zheng, D. (2021). Using Remote Sensing Techniques to Improve Hydrological Predictions in a Rapidly Changing World. Remote Sensing, 13(19), 3865.

6. Liu, J., Chai, L., Dong, J., Zheng, D., et al. (2021). Uncertainty analysis of eleven multisource soil moisture products in the third pole environment based on the three-corned hat method. Remote Sensing of Environment, 255, 112225.

7. Cao, B., Li, X., Feng, M., and Zheng, D. (2021). Quantifying overestimated permafrost extent driven by rock glacier inventory. Geophysical Research Letters, 48, e2021GL092476.

8. Ma, H., Zeng, J., Zhang, X., Fu, P., Zheng, D., Wigneron, J.P., Chen, N., and Niyogi, D. (2021). Evaluation of six satellite- and model-based surface soil temperature datasets using global ground-based observations. Remote Sensing of Environment, 264, 112605.

9. Zhao, L., Yang, K., He, J., Zheng, H., and Zheng, D. (2021). Potential of Mapping Global Soil from SMAP Soil Moisture Product: A Pilot Study. IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2021.3119667.

10. Sun, J., Chen, Y., Yang, K., Lu, H., and Zheng, D.  (2021). Influence of organic matter on soil hydrothermal processes in the tibetan plateau: observation and parameterization. Journal of Hydrometeorology, 22, 2659-2674.

11. Hofste, J. G., van der Velde, R., Wen, J., Wang, X., Wang, Z., Zheng, D., van der Tol, C., and Su, Z. (2021). Year-long, broad-band, microwave backscatter observations of an alpine meadow over the Tibetan Plateau with a ground-based scatterometer. Earth Syst. Sci. Data, 13, 2819–2856.

12. Su, Z., Ma, Y., Chen, X., Dong, X., Du, J., Han, C., He, Y., Hofste, J.G., Li, M., Li, M., Lv, S., Ma, W., Polo, M.J., Peng, J., Qian, H., Sobrino, J., van der Velde, R., Wen, J., Wang, B., Wang, X., Yu, L., Zhang, P., Zhao, H., Zheng, H., Zheng, D., Zhong, L., Zeng, Y. (2021). Monitoring Water and Energy Cycles at Climate Scale in the Third Pole Environment (CLIMATE-TPE). Remote Sens., 2021, 13(18), 3661.

13. Lu, H., Zheng, D., Yang, K., and Yang, F. (2020). Last Decade Progress in Understanding and Modeling the Land Surface Processes on the Tibetan Plateau. Hydrology and Earth System Science, 24, 5745–5758.

14. Su, Z., Wen, J., Zeng, Y., Zhao, H., Lv, S., van der Velde, R., Zheng, D., et al. (2020). Multiyear in-situ L-band microwave radiometry of land surface processes on the Tibetan Plateau. Scientific Data, 7, 317.

15. Yang, K., Chen, Y., He, J., Zhao, L., Lu, H., Qin, J., Zheng,D.,andLi, X. (2020).Development of a daily soil moisture product for the period of 2002–2011 in Chinese mainland.Science China Earth Sciences, 63, 1113-1125.

 

Supported Projects

National Natural Science Foundation of China (Grant No. 41871273), Retrieval of unfrozen soil water using microwave remote sensing and its application to hydrologic data assimilation over the Tibetan Plateau, 2019.1-2022.12

Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA2010010302),  Impact of frozen soil degradation on land surface process changes, 2018.3-2023.2